Comprehensive profiling of DUB inhibitors using the Medivir DUB platform

Stina Lundgren, Mark Albertella, Oscar Belda, Dean Derbyshire, Ian Henderson, Daniel Jönsson, Jimmy Lindberg, Ewa Odrzywol, Caroline Stoor, Kia Strömberg, Sofia Unnerståle, Fredrik Öberg. <u>stina.lundgren@medivir.se</u>; Medivir AB, Huddinge, Sweden

MEDIVIR

Background

- Medivir is a research-based pharmaceutical company with extensive experience in protease inhibitor design and nucleoside/nucleotides.
- protease technology platform is well • Our established and with a well proven track-record, most recently demonstrated with a Cathepsin K inhibitor, now in phase II clinical trials for osteoarthritis.
- It is well recognized that the ubiquitination system can regulate many important cancer pathways and that using deubiquitinase (DUB) inhibitors could provide a novel targeting approach.¹
- Medivir is applying our strength in protease inhibitor design to investigate multiple DUB targets.

DUB Inhibitors

- To enable target evaluation of DUBs, it is important to have access to high quality tool compounds.
- We searched the literature and identified a multitude of suggested DUB inhibitors for further investigation.
- In this ongoing activity a selection of 80 inhibitors have been synthesized or purchased thus far.
- Several of these inhibitors have activity reported against one or a few DUBs, or are reported to be selective against a certain DUB.
- Many of the identified DUB inhibitors contain reactive chemical groups suggesting poor selectivity over other DUBs or Cys-proteases.
- Several of the DUB inhibitors included chemical motifs associated with assay interference.

- To enable this, we have established a DUB platform of biochemical and biophysical assays, including protein production, characterization and structural biology.
- We have validated this platform by comprehensive characterization of publically disclosed DUB inhibitors.

Compound characteristics

Compound

MALT 1

Ki (μM)

Thrombin

Ki (μM)

B

64

70

6.8

>100 >100 >100 >100 0.44

G

70

57

- All inhibitors, purchased or synthesized, were subject to careful purity and identity control as well as full structural assignment by NMR.
- After passing QC, the compounds were profiled in biochemical, physiochemical and DMPK assays.

Kinetic Solubility (μM)	12	6	6	<2	<6	87	5	60	<1	<1	>100
CACO-2 Papp (cm/s*10^-6)	15	*	4.9	*	*	*	25	4.1	12	13	15
HLM CLint (µL/min/mg)	<6	>300	14	nd	87	240	250	50	66	8	9
Redox liability	-	-	-	-	+	+	-	-	-	-	-
*Low Papp indicated	d										

Enzyme activity IC_{50} (μM)

Compound	Α	В	С	D	E	F	G	н	I	J	К
USP1/UAF1	2.8	16	4.1	>100	4.5	0.75	3.1	1.1	>100	>100	31
USP2 CD	5.9	12	6.7	*	nd	0.59	>100	3.7	*	94	77
USP2 CD [§]	3.9	>100	nd	nd	nd	5.1	>100	>100	nd	>100	>100
USP7	6.1	8.9	2.4	26	#	0.29	>100	47	>100	16	46
USP14	5.4	>100	>100	40	0.52	1.4	>100	13	>100	53	38
USP28	1.8	*	*	15	nd	nd	*	28	*	45	*
USP47	14	6.6	4.5	>100	nd	nd	>100	7.7	>100	33	>100

§ 1mM DTT, # <3 μ M, interference * <15% inhibition at 10 μ M,

- Protocols for enzyme assays have been established in-house for a number of the ubiquitin-specific proteases (USPs)
- Although claimed to be selective against a certain DUB, several of the inhibitors were active on multiple USPs.
- Particularly compounds A and F were found to be broad range DUB inhibitors, while compound G shows high USP1 selectivity.

Ubiquigent DUB*profiler*[™] data

- In order to further evaluate the selectivity of the compounds we assayed a set of compounds for single concentration enzyme activity in the Ubiquigent DUB*profiler*[™].
- As exemplified in the radar plot, many of the compounds showed negligible inhibition of the DUBs tested.
- In contrast, compound H shows activity on many of the DUBs in the Ubiquigent DUB*profiler*[™].
- In line with our in-house enzyme data, Compound G shows an excellent selectivity profile, being active on USP1 only.
- The difference in activity we see between our in house assay data and the external data could be due to the difference in assay conditions.

Selectivity over other proteases

- To avoid off-target effects it is important to counterscreen against other proteases. This is particularly critical when targeting the catalytic site.
- We have counterscreened several of the publically disclosed DUB inhibitors against a number of cysteine and serine proteases.
- Compound F is not only a broad range DUB inhibitor but also inhibits several other cysteine proteases, e.g. MALT 1.
- Additionally to MALT 1 activity, compound H inhibits thrombin with sub- μ M Ki.

Biophysical evaluation of a Hit in one of our internal DUB project

- An in-house designed protease compound library was screened against multiple DUBs in parallel.
- Numerous hits were identified for our front-running DUB project, and we are progressing several hit series.
- The hit series have been evaluated and characterized biophysically using ITC, NMR, DSF and MST.
- Rational design and exploration of the hits has generated inhibitors with high nM IC50s.
- Several of our in-house generated inhibitors show excellent enzymatic selectivity in a panel of DUBs tested.

Assay	Result				
Mw	<400				
HBD, HBA	2, 7				
TPSA	94				
USPx FL DiUB IC ₅₀	3.0 μM				
USPxCD UB_RHO IC ₅₀	3.9 μM				
DSF IC ₅₀	5.5-7.5 μM				
USPx CD ITC K _d	70 μM				
USPX CD NMR	CSPs observed				
Log D _{7 4} , Kin. Sol. (µM)	0.60, >100				

Redox	activity
-------	----------

- The active site cysteine in cysteine proteases is prone to oxidize, resulting in loss of catalytic activity.
- To distinguish between true inhibitors and false positives it is important to examine if compounds have an inherent redox activity.
- Compounds E and F are redox active and caution should be taken when interpreting result from these compounds.
- Compound A did not show redox activity in this assay, but it contains a well known redox chemical motif.

Summary

Solubility

- Solubility is one of the key physicochemical parameters of a new molecule that needs to be assessed early on in the drug discovery process.
- For some compounds, the solubility is highly dependent on the buffer composition and pH.
- High solubility of a compound is important to ensure reliable enzyme data and ADME property assay results.
- Compounds with low solubility might display misleadingly low IC₅₀ values due to precipitation of the protein during enzyme assay.
- Poorly soluble compounds might show low activity due to inaccurate concentrations.
- Several of the DUB inhibitors we have profiled show remarkably low kinetic solubility, and caution should be taken when interpreting assay results on these compounds.

- We have established a DUB platform consisting of compound libraries, enzyme assays, protein production, biophysical characterization and screening techniques, allowing multiple hit finding strategies.
- Using this DUB platform we have performed comprehensive characterization of compounds in the DUB literature.
- Due to the implications of high reactivity, poor selectivity and poor physicochemical properties caution should be taken when using particular literature DUB inhibitors as pharmacological tools for understanding DUB biology.
- The compounds identified as suitable pharmacological tools in the DUB platform, are used for target evaluation of the specific DUBs.
- Our in-house DUB project is prosecuting several hit series originating from various hit finding techniques in our established DUB platform.
- In addition to progressing our front-running DUB project, multiple hits for other DUB enzymes are under evaluation.

References

1. J. Med. Chem. 2015; 58(4); 1581-1595; Prog. Med. Chem. 2016, 55, 149-192; 2. WO2011137320; 3. WO2013058691; 4. Cancer Res 2010; 70(22):9265-76; 5. US8648076; 6. EP1749822; 2007 7. 8. WO2014105952; 9. WO2007009715; 10. Chem Biol 2011; 18: 1390-1400; 11. Pragani et al. MEDI 127, 246th ACS National meeting, 2013; 12. WO2011094545